Company      Products      Technology       Measurement      Services      Resources      Contact Us  

 

Multi-angle Reflectometry & Ellipsometry

Reflection and Transmission

Spectroscopic Ellipsometry

Spectroscopic Reflectometry

CD Metrology

Chromatic Confocal Spectroscopy

 

 

 

 

 

 

 

 

FilmTek� Spectroscopic Ellipsometers

SCI provides high resolution thin-film metrology systems to leading companies in the semiconductor, optoelectronics, data storage, display, MEMS, biotechnology, photovoltaic, and optical coating industries.  FilmTek� spectroscopic ellipsometers are based on a rotating compensator design and combine spectroscopic ellipsometry with multi angle reflectometry to provide peak performance from very-thin to very-thick films.  FilmTek� spectroscopic ellipsometers accurately determine film thickness, refractive index, and extinction coefficient.  FilmTek� spectroscopic ellipsometer systems come in a variety of configurations ranging from table-top systems suitable for R&D to fully automated, standalone production tools, and depending on the model can measure reflection, transmission, multiple angle reflection, spectroscopic ellipsometry, and generalized ellipsometry data.

 

 

 

FilmTek� 2000SE Spectroscopic Ellipsometer

 

FilmTek� Spectroscopic Ellipsometer Software

 

FilmTek� 2000 PAR_SE Spectroscopic Ellipsometer

 

FilmTek� 3000 PAR-SE Spectroscopic Ellipsometer with AutoLoader

 

 

FilmTek� CD 

 Spectroscopic Ellipsometer with Scatterometry

 

FilmTek� 4000-A

 Multi-AngleSpectroscopic Ellipsometer

 

FilmTek� 6000 PAR-SE

Multi-Angle Spectroscopic Ellipsometer

 

FilmTek� SE

Spectroscopic Ellipsometer

 

 

Spectroscopic Ellipsometry with 0.03 � Repeatability on Native Oxide

The FilmTek� 2000SE is an affordable spectroscopic ellipsometer for thin film characterization that measures from the deep UV to NIR (190-1700nm).  Based on a rotating compensator design, the FilmTek� 2000SE spectroscopic ellipsometer combines spectroscopic ellipsometry with multiple angle reflectometry to make it ideally suited for measuring the thickness and optical constants (n & k) of very thin films.  The FilmTek� 3000SE spectroscopic ellipsometer adds transmission measurement capability in addition to spectroscopic ellipsometry and DUV reflectometry.  The FilmTek� 2000SE spectroscopic ellipsometer utilizes SCI's material modeling software to provide an affordable and reliable thin film measurement tool for the simultaneous measurement of film thickness, index of refraction, and extinction coefficient.

 

FilmTek� Spectroscopic Ellipsometer Advantages

Spectroscopic reflection (190nm-1700nm) of polarized light at multiple angles
Spectroscopic ellipsometry with rotating compensator design (300nm-1700nm)
Measures film thickness and index of refraction independently
Multi-Angle Differential Polarimetry (MADP) technology with SCI�s patented Differential Power Spectral Density (DPSD) technology
Ideal for measuring ultra-thin films (0.03 � repeatability on native oxide)
Optional generalized ellipsometry (4x4 matrix generalization method) for anisotropy measurements (nx, ny, nz)
Ideal for measuring advanced thin films

 

FilmTek� Spectroscopic Ellipsometer Features

Versatile: FilmTek� spectroscopic ellipsometers incorporate SCI�s generalized material model with advanced global optimization algorithms for simultaneous determination of:


- Multiple layer thicknesses
- Indices of refraction [ n(l ) ]
- Extinction (absorption) coefficients [ k(l ) ]
- Energy band gap [ Eg ]        
- Constituent and void fraction
- Film gradient

Low Cost: The cost of ownership of a FilmTek� spectroscopic ellipsometer is very competitive with comparable instruments.
No Special Knowledge Required: FilmTek� spectroscopic ellipsometer software is designed so that minimal experience in personal computers, thin film optical design, or measurement techniques is required.
Complete "turn key" System: A fully integrated spectroscopic ellipsometer measurement system with calibration, acquisition, and analysis software.
Non-contact and non-destructive.
Flexible: FilmTek� spectroscopic ellipsometer hardware and software can be easily modified to satisfy unique customer requirements.
Optional FilmTek� spectroscopic ellipsometer features:
- Computer controlled automated stage.
- Cassette to cassette wafer handling
- Small spot size (50 microns)
- Pattern recognition (Cognex)

 

FilmTek� 2000SE Spectroscopic Ellipsometer Applications

Virtually all translucent films ranging in thickness from 1 angstrom to approximately 150 microns can be measured with high precision using the FilmTek� 2000SE spectroscopic ellipsometer. Typical FilmTek� 2000SE spectroscopic ellipsometer applications include:


Semiconductor and dielectric materials Computer disks
Multilayer optical coatings Coated glass
Optical antireflection coatings Thin metals
Electro-optical materials Solar cells

Example Films

SiOx a-Si
SiNx a-C:H
DLC ITO
SOG         Polysilicon
Photoresist Polyimide
Thin Metals Low K Dielectric Films


Example Substrates

Silicon GaAs
SOI Glass
SOS Aluminum

 

FilmTek� 2000SE Spectroscopic Ellipsometer Application Reports

 

FilmTek� spectroscopic ellipsometer metrology systems can measure a broad array of single and multi-layer films including metallic, semiconductor, amorphous, crystalline, and dielectric materials on virtually any substrate.  FilmTek� can simultaneously determine:

  • Multiple layer thicknesses (from <1� to 250 microns)
  • Indices of refraction [ n(l) ]  (both TE and TM components of index)
  • Extinction (absorption) coefficients [ k(l) ]
  • Birefringence (l)
  • Energy band gap [ Eg ]
  • Surface roughness and damage
  • Porosity, composition, and crystallinity (EMA model)

  • Film properties versus temperature
  • Wafer curvature and film stress

Application Notes

Advanced Packaging and TSV Application Reports

  • Through Silicon Via (TSV) Metrology

MEMS Application Reports

  • Critical Dimension, Etch Depth, and Film Thickness Measurement

R&D Application Reports

  • Characterizing Graphene with Multi-Angle Reflectometry and Ellipsometry

Optoelectronics Application Reports

  • Characterizing Oxide Films for Waveguide Applications
  • FilmTek� 4000 Repeatability
  • Characterizing Film Properties versus Temperature

Semiconductor Application Reports

  • Characterizing Phase Change Materials: GeSbTe (GST)
  • Characterizing SiGe
  • Measuring Silicon on Insulator (SOI) Films
  • Characterizing Very Thin ONO Films
  • Characterizing Advanced Low-k Materials
  • Characterizing High-k Materials
  • Characterizing Amorphous Silicon and Polysilicon
  • Characterizing Silicon on Sapphire (SOS)
  • Measuring Surface Roughness
  • Characterizing Photomasks

Flat Panel Display Application Reports

  • Measuring Color Coordinates: Colored Resists
  • Characterizing OLED Display Materials
  • Characterizing Birefringent Materials: PET

Photovoltaic Application Reports

  • Characterizing Thin Film Solar Cells

 

Spectroscopic Ellipsometry Background

Ellipsometry is a versatile and powerful optical technique for the investigation of the dielectric properties (complex refractive index or dielectric function) of thin films. Ellipsometry has applications in many different fields, from semiconductor physics to microelectronics and biology, from basic research to industrial applications. Ellipsometry is a very sensitive measurement technique and provides unequalled capabilities for thin film measurement.  Spectroscopic Ellipsometry is non-destructive and contactless. Ellipsometry can yield information about layers that are thinner than the wavelength of the probing light itself, even down to a single atomic layer or less. Ellipsometry can probe the complex refractive index or dielectric function tensor, which gives access to fundamental physical parameters and is related to a variety of sample properties, including morphology, crystal quality, chemical composition, or electrical conductivity. Ellipsometry is commonly used to characterize film thickness for single layers or complex multilayer stacks ranging from a few angstroms or tenths of a nanometer to several micrometers.

 

Ellipsometry measures the change of polarization upon reflection or transmission. The name "ellipsometry" stems from the fact that the most general state of polarization is elliptic. The ellipsometry technique has been known for almost a century, and has many standard applications today. Ellipsometry is also becoming more interesting to researchers in other disciplines such as biology and medicine. Typically, ellipsometry is performed in the reflection setup. The exact nature of the polarization change in ellipsometry is determined by the sample's properties (thickness, complex refractive index or dielectric function tensor). Although optical techniques are inherently diffraction limited, ellipsometry exploits phase information and the polarization state of light, and can achieve angstrom resolution. Ellipsometry is applicable to thin films with thickness less than a nanometer to several micrometers. In ellipsometry the sample must be composed of a small number of discrete, well-defined layers that are optically homogeneous and isotropic. Violation of these assumptions will invalidate the standard ellipsometric modeling procedure, and more advanced variants of the ellipsometric technique must be applied.

 

In ellipsometry, electromagnetic radiation is emitted by a light source and linearly polarized by a polarizer. It can pass through a compensator (retarder, quarter wave plate) and falls onto the sample. After reflection the radiation passes a second polarizer, which is called analyzer, and falls into the detector. Ellipsometry is a specular optical technique (the angle of incidence equals the angle of reflection). The incident and the reflected beam span the plane of incidence. Standard ellipsometry measures two of the four Stokes parameters, which are conventionally denoted by Ψ and Δ. The polarization state of the light incident upon the sample may be decomposed into an s and a p component (the s component is oscillating perpendicular to the plane of incidence and parallel to the sample surface, and the p component is oscillating parallel to the plane of incidence). The amplitudes of the s and p components, after reflection and normalized to their initial value, are denoted by rs and rp, respectively. Ellipsometry measures the ratio of rs and rp. TanΨ is the amplitude ratio upon reflection, and Δ is the phase shift (difference). Since ellipsometry is measuring the ratio (or difference) of two values (rather than the absolute value of either), ellipsometry is very robust, accurate, and reproducible. For instance, ellipsometry is relatively insensitive to scatter and fluctuations, and requires no standard sample or reference beam.

 

Ellipsometry is an indirect method.  That is, the measured Ψ and Δ cannot be converted directly into the optical constants of the sample. Normally, a model analysis must be performed with ellipsometry. Direct inversion of Ψ and Δ is only possible in very simple cases of isotropic, homogeneous and infinitely thick films. In all other ellipsometry cases a layer model must be established, which considers the optical constants (refractive index or dielectric function tensor) and thickness parameters of all individual layers of the sample including the correct layer sequence. Using an iterative procedure (least-squares minimization) unknown optical constants and/or thickness parameters are varied, and Ψ and Δ values are calculated using the Fresnel equations. The calculated Ψ and Δ values, which match the experimental ellipsometric data best, provide the optical constants and thickness parameters of the sample.

 

Single wavelength ellipsometry uses a monochromatic light source. This is usually a laser in the visible spectral region, for instance, a HeNe laser with a wavelength of 632.8 nm. Therefore, single-wavelength ellipsometry is also called laser ellipsometry. However, the experimental output is restricted to one set of Ψ and Δ values per measurement. Spectroscopic ellipsometry (SE) employs broad band light sources, which cover a certain spectral range in the infrared, visible, or ultraviolet spectral region. With spectroscopic ellipsometry the complex refractive index or the dielectric function tensor in the corresponding spectral region can be obtained, which gives access to a large number of fundamental physical properties.

 

Standard vs. Generalized Ellipsometry

Standard ellipsometry (or just 'ellipsometry') is applied when no s-polarized light is converted into p-polarized light, nor vice versa.  This is the case for optically isotropic samples such as amorphous materials or crystalline materials with a cubic crystal structure. Standard ellipsometry is also sufficient for optically uniaxial samples when the optical axis is aligned parallel to the surface normal. In all other cases, when s-polarized light is converted into p-polarized light and/or vice versa, the generalized ellipsometry approach must be applied. Examples for generalized ellipsometry are arbitrarily aligned, optically uniaxial samples, or optically biaxial samples.

 

Spectroscopic Ellipsometry References

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, Elsevier Science Pub Co (1987).

H. G. Tompkins, A Users's Guide to Ellipsometry, Academic Press Inc, London (1993).

H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry, John Wiley & Sons Inc (1999).

H. G. Tompkins and E. A. Irene (Editors), Handbook of Ellipsometry, William Andrews Publications, Norwich, NY (2005).

 

 

Copyright� Scientific Computing International 1993-2019. All rights reserved.

Top